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SUMMARY

In this paper we present a class of semi-discretization �nite di�erence schemes for solving the transient
convection–di�usion equation in two dimensions. The distinct feature of these scheme developments is
to transform the unsteady convection–di�usion (CD) equation to the inhomogeneous steady convection–
di�usion-reaction (CDR) equation after using di�erent time-stepping schemes for the time derivative
term. For the sake of saving memory, the alternating direction implicit scheme of Peaceman and
Rachford is employed so that all calculations can be carried out within the one-dimensional frame-
work. For the sake of increasing accuracy, the exact solution for the one-dimensional CDR equation
is employed in the development of each scheme. Therefore, the numerical error is attributed primarily
to the temporal approximation for the one-dimensional problem. Development of the proposed time-
stepping schemes is rooted in the Taylor series expansion. All higher-order time derivatives are replaced
with spatial derivatives through use of the model di�erential equation under investigation. Spatial deriva-
tives with orders higher than two are not taken into account for retaining the linear production term
in the convection–di�usion-reaction di�erential system. The proposed schemes with second, third and
fourth temporal accuracy orders have been theoretically explored by conducting Fourier and dispersion
analyses and numerically validated by solving three test problems with analytic solutions. Copyright ?
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The objective of this paper is to develop a class of �nite di�erence schemes for solving
the physically important convection–di�usion scalar transport equation, which is the simplest
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prototype �uid dynamics=heat transfer equation. This equation is also computationally impor-
tant since it is often chosen to benchmark the proposed numerical schemes. Prediction of this
working equation is, thus, a subject of considerable signi�cance for several decades. In the
present study we restrict our attention to the two-dimensional unsteady case.
A reliable transport scheme requires suppressing convective instabilities and retaining pre-

diction accuracy when convective terms largely dominate di�usive terms in the equation [1].
It has been known that use of stable multi-dimensional schemes may contaminate the solu-
tions with excessive di�usion error. A highly accurate scheme, on the other hand, su�ers from
instability problem which may even cause solutions to diverge. The main theme of the present
study is to construct a time-evolving convection–di�usion scheme which accommodates high
accuracy and good stability properties concurrently. Numerical simulation of partial di�eren-
tial equations is also concerned with numerical e�ciency, thus we do not regard a scheme as
useful if it is not cost-e�ective.
The rest of this paper is organized as follows. Section 2 presents the time-dependent

convection–di�usion equation in a domain of two dimensions. This is followed by the pre-
sented semi-discretization �nite-di�erence schemes and the alternating direction implicit solu-
tion procedures. Our emphasis is on the development of schemes which can provide higher
temporal and spatial accuracy, while retaining stability. In Section 3 we present several tem-
poral discretization schemes and in Section 4 the method of approximating spatial derivatives.
Theoretical studies of the proposed temporal schemes are given in Section 5. Section 6 presents
numerical results for purposes of validating the methods. In Section 7, we give concluding
remarks.

2. WORKING EQUATION AND SOLUTION ALGORITHM

We consider in this paper the following two-dimensional equation for a passive scalar �
transported in the domain �:

�t + u �x + v �y − k(�xx + �yy) = 0 (1)

We shall in what follows assume that the velocity components (u and v) and the di�usion
coe�cient k are constant. The above equation together with the initial condition �(x; y; 0) and
the boundary condition �= g on @� constitute a closed initial boundary-valued problem.
For purposes of computational e�ciency in solving the multi-dimensional equation, we

apply the alternating direction implicit (ADI) scheme of Peaceman and Rachford [2]. Use of
this spatial operator splitting strategy enables us to calculate solutions iteratively through the
two steps given below:
Predictor step:

�∗
t + u�

∗
x − k�∗

xx = −v�ny + k�nyy (2)

Corrector step:

�n+1t + v�n+1y − k �n+1yy = −u�∗
x + k�

∗
xx (3)

Take the unsteady convection–di�usion equation (2) as an example. Application of the �rst-
order accurate forward di�erence scheme for �∗

t yields the inhomogeneous convection–
di�usion-reaction equation given by u�∗

x − k�∗
xx+(1=�t)�

∗= − v�ny+ k�nyy+(1=�t)�n. How
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accurately the employed scheme can approximate the inhomogeneous convection–di�usion-
reaction equation turns out to be the key issue in solving Equation (1). With this recognition
in mind, the equation worthy of consideration is chosen to be

�t + u�x − k�xx = f (4)

where f(≡ −v�ny + k�nyy) is a known value, which is obtained from � at t = n�t.

3. TEMPORAL DISCRETIZATION METHODS

The building block in developing the parabolic �nite-di�erence scheme for the model equation
(4) involves approximating the time derivative term and then the remaining spatial derivatives.
Within this semi-discretization framework, �t is approximated by the following Taylor series
expansion of � with respect to time at t= n�t:

�n+1 = �n +�t�nt +
(�t)2

2!
�ntt +

(�t)3

3!
�nttt +

(�t)4

4!
�ntttt + · · ·+HOT (5)

The temporal accuracy of the discretization varies according to the number of truncated terms
shown on the right-hand side of (5).

3.1. One-step second-order temporal scheme

Considering the following approximation for Equation (5):

�n+1 = �n +�t�nt +
(�t)2

2
�ntt (6)

The expression for �nt in (6) can be directly obtained from Equation (4) as

�nt = f
n − u�nx + k�nxx (7)

As for �ntt , it could be replaced with the spatial derivatives from the equation that is
derived by performing @=@t on Equation (4). This is, however, undesirable since the intro-
duced dispersion term �xxx may destabilize the discrete equation. To circumvent this di�culty,
we avoid invoking the terms like �xxx and �xxxx by employing

�ntt =
2

(�t)2
(�n+1 − �n −�t�nt ) =

(
�n+1 − �n
�t

)
t
+CT (8)

where the correction term CT is written as

CT =
2

(�t)2
(�n+1 − �n)− 1

�t
(�n+1t + �nt ) (9)

Substitution of Equation (7) for �nt and Equations (8)–(9) for �
n
tt into Equation (6) enables

us to derive the following convection–di�usion-reaction equation:

u�n+1x − k�n+1xx + 2�n+1 = F (10)

where F =f
n+1
+ 2�n + (f

n − u�nx + k�nxx) + (�t)2CT and (u; k; f)= (u�t; k�t; f�t). Note
that Equation (7) at the time level n + 1 is required to derive the above equation. Upon
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obtaining the updated value of �, one can compute �n+1t from fn+1 − u�n+1x + k�n+1xx using
the high-order spatial scheme described in Section 4. The solution �n+1 for (10) is obtained
iteratively for f

n+1
until the user’s speci�ed tolerance is reached.

3.2. Multi-step higher-order temporal schemes

3.2.1. Two-step third-order temporal scheme. The scheme described in Section 3.1 can be
re�ned by taking ((�t)3=6)�nttt into consideration. Inclusion of this term into the scheme
development for improving temporal accuracy is accomplished by virtue of the following
two-step time-stepping method. In the �rst step, the solution advancing one-third of the time
increment �t is approximated as

�n+(1=3) = �n +
�t
3
�nt +

(�t)2

18
�ntt (11)

This is followed by introducing a parameter A in the representation of �nt as

�nt =
�n+1 − �n
�t

+ A�t�n+(1=3)tt (12)

Substitution of Equation (11) into (12) can render

�n+1 = �n +�t�nt +
(�t)2

2!
�ntt +

(�t)3

3!
�nttt + · · ·

on condition that A= 1
2 . Therefore, the third-order temporal accuracy can be obtained from

the following two-step time-stepping scheme:

�n+(1=3) = �n +
�t
3
�nt +

(�t)2

18
�ntt (13a)

�n+1 = �n +�t�nt +
(�t)2

2
�n+(1=3)tt (13b)

Following the same procedures as those described in Section 3.1, the third-order temporally
accurate solution can be obtained from the following two CDR partial di�erential equations:

u�n+(1=3)x −k�n+(1=3)xx +6�n+(1=3) = f
n+(1=3)

+6�n+(f
n−u�nx+k�nxx)+

(�t)2

3
CT1 (14a)

u�n+1x −k�n+1xx +
4
3
�n+1 =f

n+1
+
4
3
�n+

4
3
(f

n−u�nx+k�nxx)

−(fn+(1=3) − u�n+(1=3)x + k�n+(1=3)xx ) +
2(�t)2

3
CT2 (14b)

Two correction terms CTi (i=1; 2) shown above are written as

CT1 =
18
(�t)2

(�n+(1=3) − �n)− 3
�t
(�n+(1=3)t + �nt )

CT2 =
2

(�t)2
(�n+1 − �n)− 3

2�t
(�n+1t − �n+(1=3)t )− 2

�t
�nt
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3.2.2. Three-step fourth-order temporal scheme. The scheme can be further improved by
increasing one order of temporal accuracy using the following three-step time-stepping
algorithm:

�n+(1=3) = �n +
�t
3
�nt +

�t2

18
�ntt (15a)

�n+(2=3) = �n +
2�t
3
�nt +

2�t2

9
�ntt (15b)

�n+1 = �n +�t(��nt + ��
n+(1=3)
t + ��n+(2=3)t ) + (�t)2��n+(2=3)tt (15c)

The validity of the above three equations is subject to the condition given below

�n+1 = �n +�t�nt +
(�t)2

2!
�ntt +

(�t)3

3!
�nttt +

(�t)4

4!
�ntttt + · · ·+HOT (16)

The time derivatives are replaced with the spatial derivatives using the same idea described
earlier. We are led to obtain �= −1

32 , �=
9
8 , �=

−3
32 and �=

3
16 after some algebra. The derived

three CDR equations given below can render fourth-order temporal accuracy

u�n+(1=3)x −k�n+(1=3)xx +6�n+(1=3) = f
n+(1=3)

+6�n + (f
n−u�nx+k�nxx)+

(�t)2

3
CT1 (17a)

u�n+(2=3)x − k�n+(2=3)xx + 3�n+(2=3) = f
n+(2=3)

+ 3�n + (f
n − u�nx + k�nxx) +

2(�t)2

3
CT2 (17b)

u�n+1x − k�n+1xx +
16
9
�n+1

= f
n+1
+
16
9
�n− 1

18
(f

n−u�nx+k�nxx)+2(f
n+(1=3)−u�n+(1=3)x +k�n+(1=3)xx )

− 7
6
(f

n+(2=3)−u�n+(2=3)x + k�n+(2=3)xx )+
(�t)2

3
CT3 (17c)

where the correction terms CTi (i=1− 3) are written as

CT1 =
18
(�t)2

(�n+(1=3) − �n)− 3
�t
(�n+(1=3)t + �nt )

CT2 =
9

2(�t)2
(�n+(2=3) − �n)− 3

2�t
(�n+(2=3)t + �nt )

CT3 =
16

3(�t)2
(�n+1 − �n) + 1

6�t
(�nt − 36�n+(1=3)t + 21�n+(2=3)t − 18�n+1t )
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4. SPATIAL DISCRETIZATION METHOD

The importance of approximating the one-dimensional convection–di�usion-reaction equation
given below becomes apparent in view of Equations (10), (14) and (17)

u�x − k�xx + c� = f (18)

We employ the general solution, which involves two constants c1 and c2, for Equation (18)
to obtain a higher prediction accuracy

� = c1e�1x + c2e�2x +
f
c

(19)

Substituting Equation (19) into Equation (18), we are led to obtain the following expressions
for �1 and �2:

�1 =
u+

√
u2 + 4ck
2k

and �2 =
u− √

u2 + 4ck
2k

(20)

Using the operators similar to the central di�erence operators, the following discrete equation,
which the analytic solution satis�es exactly provided that f is analytically prescribed, can be
derived

u
2h
(�i+1 − �i−1)− m

h2
(�i+1 − 2�i + �i−1) + c6(�i+1 + 4�i + �i−1) = f (21)

In the above, h denotes the mesh size. By substituting the exact expressions for �i=
c1e�1xi+c2e�2xi+(f=c), �i+1 = c1e�1he�1xi+c2e�2he�2xi+(f=c), and �i−1 = c1e−�1he�1xi+c2e−�2he�2xi+
(f=c) into Equation (21), we can analytically derive m as

m = h2

⎧⎨
⎩
c
3
+
c
6
cosh(�1) cosh(�2) +

u
2h
sinh(�1) cosh(�2)

cosh(�1) cosh(�2)− 1

⎫⎬
⎭ (22)

where

�1 =
uh
2k

and �2 =

√(
uh
2k

)2
+
ch2

k
(23)

Note that use of m given in Equation (22) can avoid the complex variable problem encountered
in our previous article [3].
The present scheme involves calculating �x(≡ Fh) and �xx(≡ Gh2) shown on the right-hand

sides of Equations (10), (14) and (17). Our strategy is to calculate them implicitly from the
two equations given, respectively, below

�0Fj+1 + �0Fj + �0Fj−1 = a0(�j+2 − �j+1) + b0(�j+1 − �j)

+ c0(�j − �j−1) + d0(�j−1 − �j−2) (24)
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and

�1Gj+1 + �1Gj + �1Gj−1 = a1�j+2 + b1�j+1 + c1�j + d1�j−1 + e1�j−2 (25)

Note that approximation of �x and �xx with the sixth-order accuracy can be obtained provided
that (�0; �0; �0; a0; b0; c0; d0)= (15 ;

3
5 ;
1
5 ;

1
60 ;

29
60 ;

29
60 ;

1
60 ) and (�1; �1; �1; a1; b1; c1; d1; e1)= (1;

11
2 ; 1;

3
8 ;

6;− 51
4 ; 6;

3
8 ).

This is followed by representing the implicit equations for F and G at nodal points immedi-
ately adjacent to the boundary points. Theoretically, it is legitimate to specify d0 = e1 = 0 and
a0 = a1 = 0 at nodes immediately adjacent to the left and right boundaries, respectively. Use of
the Taylor series expansion enables us to analytically derive (�1; �1; �1; a1; b1; c1; d1; e1)= (1; 10;
1; 0; 12;−24; 12; 0). In addition, we can have (�0; �0; �0; a0; b0; c0; d0)= ( 310 ; 35 ; 110 ; 130 ; 1930 ; 13 ; 0) and
( 110 ;

3
5 ;

3
10 ; 0;

1
3 ;
19
30 ;

1
30 ) at nodes next to the left and right boundaries, respectively.

5. THEORETICAL STUDY OF THE DISCRETIZATION SCHEME

Theoretical studies of the proposed schemes detailed in Sections 3 and 4 begin with deriving
the following one-step equations, which are equivalent to those derived in Section 3:
One-step second-order scheme:

�n+1 = �n +
�t
2
(�nt + �

n+1
t ) + CT1 (26)

Two-step third-order scheme:

�n+1 = �n+(1=3) +
�t
12
(10�nt − 11�n+(1=3)t + 9�n+1t ) + CT2 (27)

Three-step fourth-order scheme:

�n+1 =
1
2
(�n+(1=3)+�n+(2=3))+

�t
96
(−27�nt+100�n+(1=3)t −79�n+(2=3)t + 54�n+1t )+CT3 (28)

For the sake of simplicity, the analysis will be performed at the one-dimensional limiting case
for revealing the schemes’ dissipative and dispersive natures for the following equation:

�t + u�x − k�xx = 0 (29)

Subject to the initial condition given by �(x; t=0)= exp(ikmx), Equation (29) can be easily
shown to have the exact solution given by

�(x; t) = exp[−(kk2m + c)t] exp[ikm(x − ut)] (30)

where km denotes the wave-number. With h(≡ �x) chosen as the mesh size and �t as the
time increment, the discrete equation for (29) is as follows:

A1�n+1j−1 + A2�
n+1
j + A3�n+1j+1 =

3∑
k=−4

Bk�n+rj+k (31)
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The tri-diagonal coe�cients A1; A2 and A3 shown above are expressed in terms of
� = u�t=h as

A1;3 = ∓ �
2

−m− c
6

(32a)

A2 = 2m+
4c
6

(32b)

where c is the constant. According to the de�nition for Pe(= uh=k), m shown in Equation
(32) can be theoretically derived as

m = h2

⎧⎨
⎩
c
3
+
c
6
cosh(�1

∗
) cosh(�2

∗
) +

�
2
sinh(�1

∗
) cosh(�2

∗
)

cosh(�1
∗
) cosh(�2

∗
)− 1

⎫⎬
⎭ (33)

where �1
∗
=Pe=2 and �2

∗
=[(Pe=2)2 + (Pe=�)c]1=2.

Owing to the phase and amplitude errors introduced in the discretization, the exact solution
to the discrete equation for (29) is assumed to take the following expression:

�(x; t) = exp
[
−(kk2m + c)

kr
�2
t
]
exp

[
ikm

(
x − uki

�
t
)]

(34)

where �(≡ kmh) is the modi�ed wave-number. Dispersion analysis of Equation (31) starts by
substituting �j and �j±1, which are obtained from Equation (34), into Equation (31). After
some algebra, kr and ki accounting for the amplitude and phase errors are derived as

kr = − p( �
Pe
+
c
�2

) (35a)

ki = −q
�

(35b)

where

p = ln

⎧⎨
⎩

√(
f1 · a− f2 · b
a2 + b2

)2
+

(
f1 · b+ f2 · a
a2 + b2

)2 ⎫⎬
⎭ (36a)

q = tan−1
{
f1 · b+ f2 · a
f1 · a− f2 · b

}
(36b)

In the above two equations, a and b are derived as

a = (A1 + A3) cos �+ A2 (37a)

b = (A1 − A3) sin � (37b)

where f1 and f2 are shown in Appendix A.
For clearly revealing the dissipative and dispersive errors, we plot kr and ki against Pe and

�. By virtue of Figures 1 and 2, which are plotted at �=0:2 and 0.5, we are led to know
that kr and ki agree perfectly with �2 and �, respectively, in the small modi�ed wave-number
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Figure 1. Plots of kr against the modi�ed wave-number �2 for �(= 0:2; 0:5).
The exact expression for kr (solid line) is also plotted for the comparison purpose:

(a)–(b) Pe=10; (c)–(d) Pe=100; and (e)–(f) Pe=500.
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Figure 2. Plots of ki against the modi�ed wave-number � for �(= 0:2; 0:5).
The exact expression for ki (solid line) is also plotted for the comparison purpose:

(a)–(b) Pe=10; (c)–(d) Pe=100; and (e)–(f) Pe=500.
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Figure 3. Plots of the group velocity ratio Cg=Ce against the modi�ed wave-number �
for �(= 0:2; 0:5). The exact ratio of group velocities (solid line) is also plotted for the
comparison purpose: (a)–(b) Pe=10; (c)–(d) Pe=100; and (e)–(f) Pe=500. Note

that Cg and Ce are the numerical and exact group velocities, respectively.
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Figure 4. Plots of the ampli�cation factor |G| against the modi�ed wave-number � for �(= 0:2; 0:5):
(a)–(b) Pe=10; (c)–(d) Pe=100; and (e)–(f) Pe=500.

range. The higher the modi�ed wave-number, the less satisfactory agreement is seen to occur.
Note that the proposed scheme is dissipative since kr ¿ 0 in the entire wave-number range.
In Figure 3, the numerical group velocity Cg(≡ (dw=dkm)), where w is obtained from the
dispersion relation, is observed to have a magnitude smaller than the analytical propagation
speed. The proposed scheme is, thus, classi�ed to be phase-lagging.
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Figure 5. Plots of the phase angle ratio �=�e against the modi�ed wave-number � for �(= 0:2; 0:5):
(a)–(b) Pe=10; (c)–(d) Pe=100; and (e)–(f) Pe=500.

We also conduct Fourier (or von Neumann) stability analysis [4, 5] to reveal the schemes’
ampli�cation factors. Let �=(2	m=2L)h (m=0; 1; 2; 3; : : : M), h being the grid size, and 2L
being the period of fundamental frequency (m=1), the magnitude of ampli�cation factor
|G|(≡ |�n+1j =�nj |) can be derived in terms of p and q given in Equations (36a) and (36b),
where

G = ep(cos q+ i sin q) (38)
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In view of Figure 4, the proposed scheme is unconditionally stable. The ampli�cation factor
shown above can be rewritten in its exponential form as G= |G| ei�, where the phase angle
� is de�ned as

� = tan−1
∣∣∣∣ Im(G)Re(G)

∣∣∣∣ (39)

To study how � varies with Pe= uh=k and �= u�t=h, we need to derive the exact phase angle
�e, which is −��. The ratio �=�e is plotted in terms of � in Figure 5.

6. NUMERICAL RESULTS

6.1. Validation of the theoretical rates of convergence

As a �rst step towards validating the theoretical rates of convergence for the proposed two-
dimensional schemes, we consider Equation (29) in 06 x6 1 at k=1. Subject to the
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two-step third-order
three-step fourth-order

C = 2.068

C = 3.996

C = 2.865

Figure 6. The simulated temporal rates of convergence C (‘ ’ for the one-step second-order
time-stepping scheme; ‘�’ for the two-step third-order time-stepping scheme; ‘�’ for the three-step
fourth-order time-stepping scheme) for the one-dimensional problem considered in Section 6.1. Note that

the current error norms were obtained at t=4.
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Figure 7. The simulated spatial rates of convergence C for the one-dimensional problem considered in
Section 6.1 using the proposed time-stepping schemes (‘ ’ for the one-step second-order time-stepping
scheme; ‘�’ for the two-step third-order time-stepping scheme; ‘�’ for the three-step fourth-order

time-stepping scheme). Note that the current error norms were obtained at t=1.

prescribed initial condition

�(x; 0) =

	
2
sin(	x) + 2	 sin(2	x)

1 +
1
4
cos(	x) +

1
2
cos(2	x)

and the boundary conditions �(0; t)=�(1; t)=0, Equation (4) is amenable to the following
analytic solution [6]:

�(x; t) =

	
2
[exp(−	2t) sin(	x) + 4 exp(−4	2t) sin(2	x)]

1 +
1
4
exp(−	2t) cos(	x) + 1

2
exp(−4	2t) cos(2	x)

(40)

In what follows, the speci�ed tolerance, cast in the L2-norm form, mentioned in Section
3 is 10−12 for � obtained at two consecutive iterations. Computations were carried out at
�t (= 2; 1; 12 ;

1
10 ;

1
20 ;

1
100 ) and �x=10

−3. The predicted L2-error norms at t=4 were employed
to plot log( err1err2

) against log(�t1�t2
), where err1 and err2 were computed at two consecutively

re�ned time-steps �t1 and �t2. As seen in Figure 6, the computed temporal rates of con-
vergence for three investigated schemes agree approximately with their respective theoretical
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Figure 8. The solution computed at t=1 for the two-dimensional problem given in Section 6.1: (a)
exact contours; (b) computed contours; (c) the computed � along AB; (d) the computed � along AD;

(e) the computed � along AC; and (f) the computed � along BD.
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Figure 9. The simulated temporal rates of convergence C for the two-dimensional prob-
lem considered in Section 6.1. (‘ ’ for the one-step second-order time-stepping scheme;
‘�’ for the two-step third-order time-stepping scheme; ‘�’ for the three-step fourth-order

time-stepping scheme). Note that the L2-error norms were obtained at t=4.

orders. For the sake of completeness, we also plot in Figure 7 the spatial rates of conver-
gence based on the solutions obtained at �x= 1

5 ;
1
10 ;

1
20 ;

1
40 ;

1
80 and �t=10

−4. The simulated
spatial rates of convergence are all found to be slightly di�erent from the theoretical rate,
namely, 6.
We will then demonstrate that the proposed CDR scheme, applied together with the

alternating direction implicit solution algorithm, for the two-dimensional convection–di�usion
equation can also render the theoretical rates. Subject to the following initial condition:

�(x; y; t = 0) = cos(	x) cos(	y) (41)

Equation (1) is solved in a square 06 x; y6 1 at k=10−3 and the prescribed velocity
�eld (u; v)= (−	 cos(	x) sin(	y) exp(−2k	2t), 	 sin(	x) cos(	y) exp(−2k	2t)). This problem
is amenable to the following exact solution:

�(x; y; t) = cos(	x) cos(	y) exp(−2k	2t) (42)

The integrity of the proposed two-dimensional scheme, calculated at �x=�y= 1
64 and

�t=10−3, can be clearly demonstrated in Figure 8.
As seen in Figure 9, the computed temporal rates of convergence for three schemes investi-

gated at �x=�y=10−3 and �t=2; 1; 15 ;
1
10 ;

1
20 ;

1
100 agree well with their respective theoretical
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Figure 10. The simulated spatial rates of convergence C for the two-dimensional problem considered in
Section 6.1 using the proposed time-stepping schemes (‘ ’ for the one-step second-order time-stepping
scheme; ‘�’ for the two-step third-order time-stepping scheme; ‘�’ for the three-step fourth-order

time-stepping scheme). Note that the L2-error norms were obtained at t=1.

orders. For the sake of completeness, we also plot in Figure 10 the spatial rates of convergence
using the solutions obtained at �x = �y= 1

5 ;
1
10 ;

1
20 ;

1
40 ;

1
80 ;

1
160 and �t=10

−4. The simulated
spatial rates of convergence are all found to be close to 6, which is the theoretical rate of
convergence.

6.2. Two-dimensional sharply varying unsteady CD equation

The �nal test problem considers the mixing of two �uids of di�erent concentrations � in a
square −46 x; y6 4. Our aim is to check whether the discretization scheme can capture the
evolving high concentration gradient. Initially, � is set at

�(x; y; t = 0) = − tanh
(y
2

)
(43)

Subsequent to t = 0, � will be varied with the velocity �eld given by u(x; y)= − T (y=r)
and v(x; y)=T (x=r). In the above equation, T denotes the ratio of tangential velocity at a
location, which is apart from (0; 0) with a distance of r, and its maximum velocity

T =
sech2r tanh r

max[sech2r tanh r]
(44)
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Figure 11. The simulated solutions for solving the problem, given in Section 6.2, which represents the
mixing of �uid �ows with high and low concentrations: (a) initial condition; (b) the exact � contours
for the inviscid case; (c) the solution computed along y=0; (d) the solution computed along AC;

(e) the solution computed along x=0; and (f) the solution computed along BD.
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In the present computation, the number of grid points is 160 × 160, thereby yielding the
constant mesh size �x=�y=0:05. Figure 11 shows � (x; y; t=5:0) computed at k=10−10.
The sharply changing concentration pro�le at t=0 is seen to be twisted by the speci�ed �ow
�eld and is gradually developed to show a spiral-type distribution. For the sake of comparison,
we also plot in Figure 11 the exact solution at the limiting condition k=0 [7, 8]

�(x; y; t) = − tanh
[y
2
cos(wt)− x

2
sin(wt)

]
(45)

In the above, w=T=r denotes the rotation frequency.

7. CONCLUDING REMARKS

The aim of this study is to develop three schemes with the temporal accuracy orders of 2, 3
and 4 for solving the two-dimensional unsteady convection–di�usion transport equation. Our
strategy is to transform the unsteady convection–di�usion equation to the steady convection–
di�usion-reaction equation. The key to success in solving the investigated two-dimensional
transport equation lies in the developed convection–di�usion-reaction scheme. In this study,
we have developed a nodally exact one-dimensional CDR scheme so that the prediction error
stems primarily from the employed temporal discretization schemes. In the replacement of the
time derivative terms with the spatial derivative terms, we avoid invoking the spatial deriva-
tives having orders higher than 2. A full assessment of the proposed schemes requires a rig-
orous test. For this reason, we perform the fundamental studies for three investigated schemes
and solve the problems that are all amenable to the exact solutions. Based on the com-
puted L2-error norms and the resulting rates of convergence, the proposed advection–di�usion
schemes are validated. The problem with high-gradient solution pro�le is also investigated.
Good ability to capture the sharply varying solution has been demonstrated.

APPENDIX A

The coe�cients f1 and f2 shown in Equations (36a) and (36b) are given below
One-step second-order scheme:

f1 = 2− �
60
k1 +

�
180Pe

k2 (A1)

f2 =
�
60
k3 (A2)

Two-step third-order scheme:

f1 =
4
3

[
1− �
60
k1+

�
180Pe

k2
]
+e1=3p

[
�
60

(
k1 cos

1
3
q+ k3 sin

1
3
q
)

− �
180Pe

k2 cos
1
3
q
]

(A3)

f2 =
4
3
�
60
k3 + e1=3p

[
�
60

(
k1 sin

1
3
q− k3 cos 13q

)
− �
180Pe

k2 sin
1
3
q
]

(A4)
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Three-step fourth-order scheme:

f1 =
1
18

( �
60
k1 − �

180Pe
k2

)
−2e1=3p

[
�
60

(
k1 cos

1
3
q+k3 sin

1
3
q
)

− �
180Pe

k2 cos
1
3
q
]

+
7
6
e2=3p

[
�
60

(
k1 cos

2
3
q+k3 sin

2
3
q
)

− �
180Pe

k2 cos
2
3
q
]

(A5)

f2 =− 1
18

�
60
k3 − 2e1=3p

[
�
60

(
k1 sin

1
3
q− k3 cos 13q

)
− �
180Pe

k2 sin
1
3
q
]

+
7
6
e2=3p

[
�
60

(
k1 sin

2
3
q− k3 cos 23q

)
− �
180Pe

k2 sin
2
3
q
]

(A6)

where

k1 = cos 4�− 8 cos 3�+ 28 cos 2�− 56 cos �+ 35 (A7)

k2 = 4 cos 3�− 54 cos 2�+ 540 cos �− 490 (A8)

k3 = sin 4�− 8 sin 3�+ 32 sin 2�− 104 sin � (A9)

ACKNOWLEDGEMENTS

We would like to acknowledge the �nancial support from National Science Council under NSC
92-2611-E-002-008. This work was partially accomplished in the course of the second author’s sabbati-
cal leave in University of Paris 6. Excellent research resources provided by professors Oliver Pironneau
and Yvon Maday are highly appreciated.

REFERENCES

1. Patankar SV. Numerical Heat Transfer and Fluid Flow. Washington, 1980.
2. Peaceman DW, Rachford HH. The numerical solution of parabolic and elliptic di�erential equations. Journal of
the Society for Industrial and Applied Mathematics 1955; 3:28–41.

3. Sheu TWH, Wang SK, Lin RK. An implicit scheme for solving the convection–di�usion-reaction equation in
two dimensions. Journal of Computational Physics 2000; 164:123–142.

4. Richtmyer RD, Morton KW. Di�erence Methods for Initial Value Problems. Interscience Publishers/Wiley: New
York, 1967.

5. von Neumann J, Richtmyer RD. A method for the numerical calculation on hydrodynamic shock. Journal of
Applied Physics 1950; 21:232–237.

6. Cole JD. On a quasilinear equation occurring in aerodynamics. Quarterly Journal of Mechanics and Applied
Mathematics 1951; 9:225–236.

7. Tamamidis P, Assanis DN. Evaluation for various high-order-accuracy schemes with and without �ux limiters.
International Journal for Numerical Methods in Fluids 1993; 16:931–948.

8. Doswell CA. A kinematic analysis of frontogenesis associated with a nondivergent vortex. Journal of Atmospheric
Sciences 1984; 41:1242–1248.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1293–1313


